• Share

Continued Atlantic overturning circulation even under climate extremes

Nature and the biosphere

Published: 26 February 2025

  • Date (DD-MM-YYYY)

    01-03-2025 to 01-03-2026

    Available on-demand until 1st March 2026

  • Cost

    Free

  • Education type

    Article

  • CPD subtype

    On-demand

Description

The Atlantic Meridional Overturning Circulation (AMOC), vital for northwards heat transport in the Atlantic Ocean, is projected to weaken owing to global warming1, with significant global climate impacts2. However, the extent of AMOC weakening is uncertain with wide variation across climate models1,3,4 and some statistical indicators suggesting an imminent collapse5. Here we show that the AMOC is resilient to extreme greenhouse gas and North Atlantic freshwater forcings across 34 climate models. Upwelling in the Southern Ocean, driven by persistent Southern Ocean winds, sustains a weakened AMOC in all cases, preventing its complete collapse. As Southern Ocean upwelling must be balanced by downwelling in the Atlantic or Pacific, the AMOC can only collapse if a compensating Pacific Meridional Overturning Circulation (PMOC) develops. Remarkably, a PMOC does emerge in almost all models, but it is too weak to balance all of the Southern Ocean upwelling, suggesting that an AMOC collapse is unlikely this century. Our findings reveal AMOC-stabilizing mechanisms with implications for past and future AMOC changes, and hence for ecosystems and ocean biogeochemistry. They suggest that better understanding and estimates of the Southern Ocean and Indo-Pacific circulations are urgently needed to accurately predict future AMOC change.

Contact details